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Abstract. Experiments are widely used in ecology, particularly for assessing global change
impacts on ecosystem function. However, results from experiments often are inconsistent with obser-
vations made under natural conditions, suggesting the need for rigorous comparisons of experimen-
tal and observational studies. We conducted such a “reality check” for a grassland ecosystem by
compiling results from nine independently conducted climate change experiments. Each experiment
manipulated growing season precipitation (GSP) and measured responses in aboveground net
primary production (ANPP). We compared results from experiments with long-term (33-yr) annual
precipitation and ANPP records to ask if collectively (n = 44 experiment-years) experiments yielded
estimates of ANPP, rain-use efficiency (RUE, grams per square meter ANPP per mm precipitation),
and the relationship between GSP and ANPP comparable to observations. We found that mean
ANPP and RUE from experiments did not deviate from observations. Experiments and observa-
tional data also yielded similar functional relationships between ANPP and GSP, but only within the
range of historically observed GSP. Fewer experiments imposed extreme levels of GSP (outside the
observed 33-yr record), but when these were included, they altered the GSP–ANPP relationship. This
result underscores the need for more experiments imposing extreme precipitation levels to resolve
how forecast changes in climate regimes will affect ecosystem function in the future.

Key words: aboveground net primary production; climate change; extreme climate; field experiments; grasslands;
long-term data; precipitation.

INTRODUCTION

In his 1960 address to the Ecological Society of America
(ESA) membership, ESA President Thomas Park called for
an “acceleration” of the use of experiments to enhance “re-
search progress and the validity of our interpretations”
based primarily on observational studies (Park 1961). In the
50+ years since Park’s address, experiments, particularly
those conducted under field conditions, have become an
integral and perhaps even dominant approach for under-
standing ecological pattern and process (Tilman 1989,
Roush 1995, Ives et al. 1996, Knapp et al. 2012b). This is
particularly true in global change ecology, where key drivers
of ecological processes are expected to be altered in ways
that differ from both historical and present-day environmen-
tal conditions (Williams and Jackson 2007, Thompson et al.
2013). For climate change research, observations made
across natural climatic gradients or through time (e.g.,
Elmendorf et al. 2015, Mayor et al. 2017) can provide

valuable insight. But the primary approaches ecologists use
to understand how ecological processes may change in the
future include manipulating climate drivers (e.g., tempera-
ture and precipitation) at individual sites, across natural gra-
dients (e.g., Wu et al. 2011b, 2012), and via simulation
modeling (Luo et al. 2011a, b).
Despite differences in the types of inference drawn from

each approach, experimental and observational studies are
viewed generally as complementary (Silvertown et al. 2010).
Indeed, the value of interpreting experimental results within
the context of observational data is clear in many contempo-
rary global change studies (e.g., Hoover et al. 2014, Copeland
et al. 2016, Liu et al. 2018). However, despite evidence that
consistent inferences can be drawn from experimental, moni-
toring, and gradient approaches (Elmendorf et al. 2015),
such complementarity has been challenged by experimental
results directly contradicting observations (e.g., Sandel et al.
2010, Blume-Werry et al. 2016, Wardle 2016, Yuan et al.
2017, Barner et al. 2018). Not surprisingly, inconsistencies
have been attributed both to experiments strongly underesti-
mating observed climate effects (Wolkovich et al. 2012), as
well as monitoring and gradient approaches overestimating
responses to climate change (Metz and Tielb€orger 2016).
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There are many reasons that results from climate change
experiments may not reflect observations made under natu-
ral conditions (Metz and Tielb€orger 2016). For example,
ecological responses to alterations in precipitation, one of
the most commonly studied forecast climate changes (Wu
et al. 2011a), have been evaluated with both observational
and experimental approaches. Observational studies assess
how ecological responses vary as precipitation amount var-
ies over time and across geographic gradients (Knapp et al.
2017b); however, these analyses fail to account for a wide
range of covarying factors (Estiarte et al. 2016, Metz and
Tielb€orger 2016), which can make isolating precipitation
effects difficult. Experiments alleviate this concern, but are
subject to a number of potential artifacts (Leuzinger et al.
2011, Beier et al. 2012, Wolkovich et al. 2012, De Boeck
et al. 2015, Elmendorf et al. 2015, Hoover et al. 2018).
Experiments, for example, often manipulate key ecological
drivers in a simplistic manner, failing to capture the com-
plexity of the real world (Kreyling and Beier 2013). Experi-
ments also suffer from issues of scale (Sandel and Smith
2009) and tend to focus on short-term mechanisms that may
not drive longer-term outcomes (Strauss et al. 2008, Sac-
cone and Virtanen 2016). Despite these and other well-
known limitations (Tilman 1989), we rely on climate change
experiments to provide insight about the future, and in many
cases to parameterize and improve models integral for fore-
casting (Luo et al. 2011a, b).
This raises an important question: How well do climate

change experiments reflect reality? This query cannot be
addressed by comparing the outcome of a single experiment
to an observational data set. For example, we know from
long-term observations that aboveground net primary pro-
duction (ANPP) is strongly influenced by precipitation
inputs, particularly in grasslands (Sala et al. 2012, Knapp
et al. 2017b). However, in all such long-term data sets, there
are many pairs of years in which ANPP does not conform to
the expected response to precipitation (e.g., a drier year is
more productive than a wetter year). Similarly, results from
an individual experiment that includes water addition or
removal may or may not support precipitation amount as a
primary control on ANPP for any number of reasons (Cher-
win and Knapp 2012, Hoover et al. 2018). Rather, to assess
rigorously how well climate manipulation experiments reflect
reality, results from multiple independently conducted experi-
ments should be compared to many years of observations.
Here, for the first time, we present such a comparison, one
that takes advantage of multiple precipitation manipulation
experiments conducted in a water-limited native grassland,
the tallgrass prairie of North America (Knapp et al. 2001).
We challenged these experiments to replicate reality (i.e.,
observational data) in two ways. First, we asked if the values
of ANPP estimated from this collection of experiments dif-
fered from ANPP derived from long-term observations. In
other words, if we had to rely on experiments to estimate
ANPP, could they substitute for long-term observations? A
second more substantial challenge involved asking if the
functional relationship between ANPP and precipitation esti-
mated from experiments could match long-term observations.
In other words, we compared how alterations in precipitation
amount altered ANPP based on experimental vs. observa-
tional data sets. Our analysis was based on research

conducted at the Konza Prairie in northeast Kansas, USA, a
Long-term Ecological Research (LTER) site with a multi-
decadal record of monitoring ANPP and precipitation. Over
this same time period, a wide range of precipitation manipu-
lation experiments have been conducted at Konza Prairie as
well. Collectively, the experiments we compiled provide >40
estimates of ANPP responses to alterations in precipitation
for comparison with long-term (14–33 yr) observations of
ANPP and precipitation.

METHODS

We compiled ANPP and precipitation data from control
and treatments plots from nine experiments conducted at
Konza Prairie (USA) over a 35-yr period (Table 1). Results
from most of these experiments have been published, and
data were extracted from these publications or the authors
were contacted for the raw data. Data were also included
from two unpublished experiments (Table 1). For some
experiments, only mean values of ANPP and precipitation
were available. Thus to be consistent, we only analyzed mean
ANPP responses to precipitation for all experiments. Each
experiment manipulated inputs of water by differing
amounts, with some experiments imposing a single treatment
level and others including multiple levels of precipitation.
Moreover, these experiments used a variety of approaches to
alter precipitation (e.g., passive and active; Knapp et al.

TABLE 1. Sources and years of data collection for aboveground net
primary production (ANPP) and precipitation data from
precipitation manipulation experiments conducted on Konza
Prairie, Kansas, USA as well as observational data from long-
term monitoring at multiple sites across the study site.

Source Time period Data

Experimental data
Knapp (1984) 1982–1983 published data
Knapp et al. (2001) 1991–1992 Konza data catalog

(ID: WAT01)
Fay et al. (2003) 1998–1999 www.konza.ksu.edu/

ramps/data.html
VanderWeide et al.
(2014)

2009–2010 published data

Hoover et al. (2014) 2010–2011 contributed by Author
Wilcox et al. (2015) 2011–2012 contributed by Author
Denton et al. (2017) 2013 contributed by Author
EDGE (A.J. Felton,
unpublished data)

2013–2014 edge.biology.colostate.
edu

Felton et al. (A.J.
Felton, unpublished
data)

2015–2016 contributed by Author

Observational data
Konza LTER
(upland)

1984–2015 Konza data catalog
(ID: PAB01)

Konza LTER
(lowland)

1984–2015 Konza data catalog
(ID: PAB01)

RaMPs control
plots

1998–2016 www.konza.ksu.edu/
ramps/data.html

Briggs and Knapp
(1995)

1984–1997 published data

Notes: Note that some experiments included multiple levels of
precipitation treatments (increases and decreases) so that there were
42 estimates of ANPP responses to manipulated precipitation. Simi-
larly, because of overlap in the years ANPP was measured at Konza
Prairie, there were 95 observations.
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2017a), and precipitation was altered for different portions of
the growing season and often for multiple years. However,
when experiments altered precipitation for many years con-
secutively, we only included responses from the initial two
years. This was done because although it is common to
encounter two consecutive wet or dry years in the observa-
tional data set (“reality”), three consecutive wet or dry years
were uncommon. In addition, this minimized alterations in
ecosystem function caused by the cumulative effects of
increased or decreased precipitation (Smith et al. 2009, Smith
2011, Knapp et al. 2012a, Wilcox et al. 2016). Finally, no
experiments manipulated water outside the growing season,
and >90% were conducted in sites burned in the spring prior
to the experiment. Because fire alters the water relations of
grasslands and is essential for the maintenance of tallgrass
prairie (Knapp et al. 1998), we only included experiments
conducted in annually or frequently burned sites.
Long-term observational ANPP and precipitation data

from annually burned grassland were combined from four
data sets that encompassed a variety of topographic posi-
tions and soil types at Konza Prairie (Table 1). This was
desirable because experiments were conducted in both
uplands and lowlands, and from locations arrayed across
the 3,487-ha site where soil types vary (Knapp et al. 1998).
This helped insure that observational data were consistent
with experiments with respect to capturing within-site vari-
ability. For all experiments and the long-term observational
data, ANPP was estimated by harvesting aboveground bio-
mass in late August–early September. In burned grassland
sites, this represents peak aboveground biomass produced
that year (Briggs and Knapp 2001). Finally, because experi-
ments only manipulated precipitation during the growing
season, we used the same period (1 April–31 August) for cal-
culating growing season precipitation (GSP) for both experi-
mental and observational data.
As noted above, we asked if mean ANPP for Konza Prairie

based on long-term observational data differed from mean
ANPP determined from experimental plots. This might be
expected given that experiments were not conducted every
year and thus experiments sampled only a subset of the years
(15 yr) included in the observational data (33 yr, Table 1).
Mean ANPP from experiments was calculated from control
plots as well as by combining control and treatment plots. We
also compared mean GSP in observational vs. experimental
data sets. Using both GSP and ANPP data, we calculated
rain-use efficiency (RUE) as the ratio of ANPP to precipita-
tion (g�m�2�mm�1) for both data sets. Statistical significance
was assessed with ANOVA (a = 0.05, R version 3.4.3) (R
Core Team 2018).
Assessing ANPP–GSP relationships from observational

and experimental data that differed in the absolute magni-
tude of ANPP (due to differences in topographic position or
soil type; Fig. 1a) was more challenging. Here, we calculated
proportional responses in ANPP to precipitation to allow us
to compare directly the slopes of the ANPP–GSP relation-
ships. For observational data, we calculated mean ANPP
and GSP across all years and sites and expressed interannual
deviations from these means as a proportional change. For
example, mean GSP was 529 mm for the observational data
and a year with 610 mm GSP was represented as a 15%
increase in GSP. The corresponding relative change in

ANPP was determined similarly. For experimental data, we
calculated the proportional increase or decrease in GSP and
ANPP based on differences between treatment and control
plots divided by control plot values. In this way, the sensitiv-
ity of ANPP to changes in precipitation could be compared
(ANCOVA) between approaches using both linear and non-
linear regression analyses (Rversion 3.4.3).

RESULTS

As reported previously, interannual variability in ANPP
and precipitation (GSP) are strongly correlated in tallgrass
prairie, and this was evident for each of the four long-term
observational data sets we used (Fig. 1a). The slopes for
these relationships were statistically indistinguishable (rang-
ing from 0.47 to 0.55 grams per square meter ANPP per
mm precipitation) indicating that sensitivity of ANPP to
changes in GSP was similar throughout the site, regardless
of the absolute level of productivity. We considered the
range in GSP encountered over this 33-yr monitoring period
(312–964 mm) as the nominal precipitation range for our
analysis, and experiments (42 experiment-years total) pro-
vided data from 22 experiment-years that increased (n = 14)
or decreased (n = 8) GSP within this range (Fig. 1b). A
smaller number of experiment-years were available that
increased (n = 6) or decreased (n = 14) GSP beyond this
nominal range (hereafter referred to as extreme treatments).
Bias toward extreme treatments that reduced rather than
increased precipitation is not surprising given forecast
increases in extreme drought globally (Smith 2011).
Based on observational data, mean ANPP and GSP for

the study period was 511 g/m2 and 529 mm, respectively
(Fig. 2). This led to an overall site RUE of 0.99 �
0.03 g�m�2�mm�1. We then estimated ANPP, GSP, and
RUE from experimental data (1) by including only control
plot data from experiments conducted within the nominal
range of GSP, (2) by including nominal control and treat-
ment plots (with GSP adjusted based on the treatment), and
(3) by including all data (including extremes, Fig. 2). We
calculated ANPP and RUE from other combinations of
experimental data as well, but present these to capture the
range of values estimated from just nominal control plots to
all experimental data. In all cases, mean ANPP was statisti-
cally indistinguishable from the observational values (mean
experimental ANPP = 493.91–502.32 g/m2, F = 0.187, df =
3, 241, P = 0.905) as was GSP (mean experimental GSP =
487.97–512.90 mm, F = 0.803, df = 3, 241, P = 0.493). The
same was true for all combinations of RUE from these
experimental data sets (mean experimental RUE = 1.0–
1.13 g�m�2�mm�1, F = 2.29, df = 3, 241, P = 0.079).
We next compared estimates of the sensitivity of ANPP to

changes in GSP from both observational and experimental
data sets. Because alterations in GSP in experiments
exceeded those in the observational data, we estimated sensi-
tivity (slope of the ANPP–GSP relationship) for experi-
ments altering GSP within the nominal range first and then
by also including extreme GSP alterations. Within the nomi-
nal GSP range, the estimated sensitivity of ANPP to alter-
ations in GSP did not vary between the experimental and
observational data sets (Fig. 3) and the relationship was lin-
ear. When results from experiments that altered GSP to

October 2018 REALITYCHECK FORCLIMATE EXPERIMENTS 2147
R

ep
orts



extreme levels were included, the best-fit relationship was
nonlinear, although the difference in AIC between linear
and nonlinear relationships was small (367.45 and 365.15,
respectively).

DISCUSSION

This “reality check” for experiments, comparing results
from long-term observations of ANPP and precipitation,

our benchmark for reality, with a body of independently
conducted experiments, provides three key insights. First,
precipitation experiments in this grassland yielded estimates
of ANPP and RUE, as well as the sensitivity of ANPP to
changes in GSP, similar to those based on long-term obser-
vations (Fig. 2, 3). This is important given concerns that sin-
gle-factor experiments do not realistically capture “real
world” complexity, omit important interactions, and thus
will over- or underestimate ecosystem responses (Leuzinger

FIG. 1. (a) Relationship between growing season precipitation (GSP; 1 April–31 August) and aboveground net primary production
(ANPP) for four long-term data sets at Konza Prairie, Kansas, USA. The two LTER data sets are from different locations in a single
watershed whereas the Briggs and Knapp data set combines observations from multiple watersheds (see Table 1). RaMPs data represent
long-term ANPP data from observations adjacent to the Rainfall Manipulation Plots (RaMPs) study (Knapp et al. 2001). Note that the
ANPP–GSP relationship is identical for all data sets (slopes do not differ, F = 0.082, df = 3, 87, P = 0.97), despite differences in mean
ANPP (intercepts differ). (b) Frequency histogram depicting the distribution of variation in GSP relative to the long-term mean for observa-
tional data and the distribution of differences between control and treatment GSP for all experiments combined (see Table 1).
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et al. 2011, Kreyling and Beier 2013). Our analysis does not
support this perspective.
Second, these experiments were able to replicate reality in

a relatively mesic grassland (mean annual precipitation =

850 mm) that is only moderately water limited (ANPP is
colimited by multiple resources in tallgrass prairie; Knapp
et al. 1998, 2001). Arid and semiarid ecosystems, on the
other hand, are much more strongly water limited (Huxman

FIG. 2. Mean aboveground net primary productivity (ANPP) and growing season precipitation (GSP; 1 April–31 August) based on all
observational data and from three combinations of experimental data (control plots, and control plus treatment plots [Con + Trt] in the
nominal range of GSP, and all experimental data regardless of GSP; see Methods for details). The horizontal dashed lines depict the 95%
CI for observational ANPP, and the sample size for each estimate is shown above the bars. All estimates of ANPP and GSP were statistically
indistinguishable (P > 0.05).

FIG. 3. Relationship between the change in aboveground net primary production (ANPP) in response to growing season precipitation
(GSP; 1 April–31 August) for observational data and precipitation experiments conducted at Konza Prairie (see Table 1). Three relation-
ships are shown: the ANPP–GSP relationship for long-term observational data, the relationship for experimental data when GSP was within
the nominal range of GSP (denoted by vertical dashed lines), and the relationship for all experimental data including treatments that
exceeded nominal levels of GSP (dry or wet). Slopes for the two nominal regressions did not differ significantly (F = 1.679, df = 1,113,
P = 0.333), and the nonlinear relationship was selected based on AIC.

October 2018 REALITYCHECK FORCLIMATE EXPERIMENTS 2149
R

ep
orts



et al. 2004). Thus, we would anticipate that single-factor
precipitation manipulation experiments would pass a similar
reality check in ecosystems that are more arid as well.
The third insight from this analysis is that while the slopes

of the relationships between (standardized) ANPP and GSP
did not differ between observations and experiments
(Fig. 3), the slope for nominal GSP experiments was less
steep than for observations. A steeper slope for observations
in the nominal GSP range would be expected if wetter years
were generally cooler, and drier years were warmer. This is
indeed the case at Konza Prairie where growing season tem-
perature and precipitation (acquired from the Konza Prairie
LTER data catalog) are negatively correlated (r = �0.40,
P = 0.016; data available online).5 Results from experiments
would not include this covariation between temperature and
precipitation, thus, experimental wet years would be
expected to be on average warmer than naturally wet years,
whereas experimental dry years would be cooler than natu-
rally dry years. As both of these would dampen ANPP
responses to altered GSP, we assessed temperature as a
covariate for ANPP responses to GSP manipulations. No
effect of temperature was detected however, perhaps due to
the small range of temperatures encountered in these experi-
mental years.
Finally, when extreme GSP manipulations were included

in this analysis, a nonlinear (saturating) GSP–ANPP rela-
tionship was suggested (Fig. 3). A nonlinear relationship
between ANPP and GSP, when precipitation extremes are
included, has been predicted previously (Knapp et al.
2017b) but the relatively few extreme wet treatments
imposed limits on our ability to support this prediction. This
highlights the need for more experiments that simulate
extreme wet and dry years, in combination with other pre-
dicted global changes, to provide insight into how ecosys-
tems will respond to future changes in precipitation regimes
(Kreyling and Beier 2013).
In summary, although results from this “reality check”

were positive for this ecosystem, assessments of global
change experiments in a wider range of ecosystems, and
more experiments with extreme precipitation treatments,
are clearly needed. Given the prominent role of experi-
ments in ecology, their deployment along environmen-
tal gradients (e.g., Wu et al. 2012), and the availability of
long-term data, we should be evaluating much more
broadly what can and cannot be learned from experimental
approaches.
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